
Konuşma Tanıma için
Yapay Öğrenme

Murat SARAÇLAR

Boğaziçi Üniversitesi
Elektrik-Elektronik Mühendisliği Bölümü

Murat SARAÇLAR
http://busim.ee.boun.edu.tr/~murat/

• 1994 Bilkent U. EE (BS)

• 2000 Johns Hopkins U. (MS, PhD)
• 2000-2005 AT&T Labs – Research

• 2005- Boğaziçi U. EE
• 2011-2012 Google Inc.

• 2012-2013 IBM T.J. Watson Research Center
• 2013- Özgür Deniz J

Özet

•Konuşma Tanıma

• İstatistiksel Modeller

•Yapay Öğrenme

•Derin Öğrenme

Konuşma Tanıma
Tanımlar
Yaklaşımlar
Uygulamalar

Konuşma Tanıma: Tanımlar

• (Otomatik) Konuşma Tanıma:
= (Automatic) Speech Recognition

•Konuşmanın yazıya dökülmesi
(yazılandırma = transcription)

Konuşma Tanıma: Girdi ve Çıktılar

•Girdi: Konuşma «sinyali»
• Sayısallaştırılmış (8-16 kHz, 8-16 bit)

•Ara gösterim: Öznitelikler dizisi
• Konuşmada bilgi sinyalin zaman-frekans içeriğindedir
• İşaret işleme yöntemleriyle elde edilen öznitelikler
• Vektör dizisi (yaklaşık olarak saniyede 100 tane)

•Çıktı: Kelime dizisi
• Varsayım: sonlu dağarcık

Konuşma Tanıma: Sistem

Konuşma

Sözcük
Dizisi

İşaret
İşleme

Örüntü
Tanıma

Öznitelik
Dizisi

Modeller

Konuşma Tanıma: Yaklaşımlar

•Örüntü eşleştirme

• İstatistiksel modelleme

•Derin öğrenme

Konuşma Tanıma: Uygulamalar

•Dikte (bilgisayar, cep telefonu, …)
• İnsan bilgisayar (makina) arayüzü
• Telefon üzerinden etkileşim (örn. müşteri hizmetleri)
• Ses içeriğine erişim
• Akıllı asistanlar
• Sesli çeviri

Konuşma Tanıma için
İstatistiksel Yaklaşımlar
Tanımlar
Modeller
Yöntemler

İstatistiksel Konuşma Tanıma:
Biraz Matematiksel Notasyon
•Girdi: Akustik öznitelik vektör dizisi (A)

! = 1,…,&
'(∈ ℝ+, = '-, '.,…, '/

• Çıktı: Kelime dizisi (W)
0 = 1,…,1
23 ∈ 4

5 =2-,2.,…,26

İstatistiksel Konuşma Tanıma

• En olası sözcük dizisi
!" = argmax) *("|-)

• Bayes kuralı yardımıyla
!" = arg max)

* - " *(")
*(-)

• Konuşma tanımanın temel denklemi:

!" = argmax) * - " *(")

!(#): Dil Modeli

•Dil modeli bir dildeki tüm cümlelere (kelime dizilerine) bir
olasılık atar.
• En genel haliyle ! # =∏'()

* ! +' +),…,+'.)
• Tabii ki / arttıkça bütün bu koşullu olasılıkları belirlemek

mümkün olmayacaktır.
• Çözüm: Geçmişi gruplamak ℎ' = Φ(+),…,+'.))
• Böylece ! # =∏'()

* ! +' ℎ'

!(#|%): Akustik Model

• Akustik model bir akustik öznitelik vektör dizisinin bir sözcük
dizisine karşılık gelme (koşullu) olasılığını verir.
• Bir dildeki tüm sözcük dizileri için ayrı bir olasılık modeli

kestirmek mümkün değildir.
• Kısıtlı dağarcıklar haricinde tüm sözcükler için bile ayrı bir

olasılık modeli kestirmek mümkün olmayabilir.
• Bu nedenle akustik modelleme için sözcüklerden küçük

birimler kullanılır.

Söyleyiş (Telaffuz, Sesletim) Modeli:
Sözcüklerden Sesçiklere
• Akustik modelleme için tercih edilen birimler sesçiklerdir

(phone/phoneme).
• Sesçikler bağlam içinde modellenir. (örn. triphone)

• Sözcüklerden sesçiklere geçiş için bir söyleniş sözlüğü
(pronunciation lexicon) kullanılır.

•Doğal karşılıklı konuşma için olasılıksal modeller önerilmiştir.

argmax : En olası sözcük dizisini bulma

• Arama uzayı bir dildeki tüm sözcük dizilerini içermektedir.

• Bu uzay sonsuz olduğuna göre arama işlemi verimli bir
şekilde yapılmalıdır.

• Eğer arama uzayı uygun bir şekilde (örn. sonlu durum içeren
bir çizge) düzenlenirse dinamik programlama kullanılabilir.

!(#): (Görünür) Markov modelleri

•Markov varsayımı: Gelecek sadece şimdiki duruma bağlıdır,
geçmişten bağımsızdır. ! # =∏'()

* ! +' ℎ'
•Uzak geçmişi unutursak n-gram: ℎ' = {+'./0),…,+'.)}
•Unigram: ! # =∏'()

* !(+')
• Bigram: ! # =∏'()

* ! +' +'.)
• Trigram: ! # =∏'()

* ! +' +'.4,+'.)
•Model parametreleri durumlar arasındaki geçiş olasılıklarıdır.
• Ağırlıklı sonlu durum makinasıyla gerçeklenebilir.

!(#|%): Saklı Markov Modelleri (SMM)

• Saklı Markov modellerinde durumlar saklıdır.
• Yani hangi gözlemin hangi durumdan geldiği belli değildir.
•Her bir sesçik soldan sağa bir SMM ile modellenir.
• Sözcük modelleri sesçik modellerinin ardarda eklenmesiyle

elde edilir.

!(#|%): SMM Olasılıkları

• Söyleyiş modeli ve saklı Markov modellerinin eklenmesiyle
%→(= *+,…*. (sonlu durum dönüştürücüsü)

! # Λ(() =0
1
!(#,2|Λ(())

! #,2 Λ(() =3
45+

6
! 74 748+;Λ(() : ;4 74;Λ(()

•! 74 748+ : Durumlar arası geçiş olasılıkları

! "# $# : Durum Çıktı Olasılık Dağılımı

•Gauss Dağılımı (Normal dağılım)
% "# $# ='("#; *, Σ)

•Gauss Karışım Modelleri
% "# $# =.

/
0/' "#; */, Σ1

• Yapay Sinir Ağları

Modellerin Birleştirilmesi

• Ağırlıklı Sonlu Durum Makinaları ve Dönüştürücüleri
•H: Saklı Markov Modeller (SMM’lerden durumlara)
• C: Bağlam Modeli (sesçiklerden SMM’lere)
• L: Söyleyiş sözlüğü (sözcüklerden sesçiklere)
•G: Dil modeli (sözcükler)

• Arama uzayı: HoCoLoG

• Bu uzayı arama için verimli bir hale getirmek mümkündür.
(det, min, push)

En iyi durum dizisinin bulunması

• Kafes yapısı (trellis)
The “Forward” ProcedureThe “Forward” ProcedureThe Forward ProcedureThe Forward Procedure

29

Viterbi Algoritması - 1

!"($) ≡ '(()"*), (" = -., /)")

1. Başlangıç:
!)($) = '(/)|() = -.)
1) $ = 0

2. Yineleme: 3 = 1,…,6 −1
!"8) 9 =max. !" $ /.= ' /"8) ("8) = -=

1"8) 9 =max. !" $ /.=

The “Forward” ProcedureThe “Forward” ProcedureThe Forward ProcedureThe Forward Procedure

29

Viterbi Algoritması - 2

!"($) ≡ '(()"*), (" = -., /)")

3. Son:
'∗ =max. !4($)
(4∗ = argmax. !4($)

4. Geri izleme: 7 = 8−1,…,1
("∗ = <"=)(("=)∗)

The “Forward” ProcedureThe “Forward” ProcedureThe Forward ProcedureThe Forward Procedure

29

En iyi sözcük dizisi

• Viterbi algoritması NT durum dizisi içinden en iyi olanı N2T
işlemle bulur.

• Sonlu durum dönüştürücüsünde sözcük bilgileri de
saklanarak en iyi sözcük dizisi de belirlenmiş olur.

• Çıktı: En iyi durum/sözcük dizisi ve zaman bilgisi

Model Parametrelerinin Kestirimi

Ayrık (Görünür) Markov Model
Olasılıklarının Kestirimi
• En yüksek olabilirlik kestirimi verinin olasılığını en yüksek

yapan model parametrelerini belirler.
• Ayrık (görünür) Markov modelleri için parametreleri

elimizdeki veriyi kullanarak sayma ve bölme işlemleriyle
bulabiliriz.
•Örneğin ikili (bigram) dil modeli için

!" #$ #$%& = ((*+,-,*+)
((*+,-)

Dil Modelinde Sıfır Olasılıklarla Başa Çıkma - 1

• En yüksek olabilirlik kestirimi veride görülmeyen dizilere 0
olasılık atar.
•Dil modellemede bunu istenmez.
• Yumuşatma yöntemleri (smoothing)
• Zenginden alıp fakire verme J

•Daha düşük derece koşullanmış olasılıkları kullanma
• Aradeğerleme (interpolation)
•Unutma (back-off)

Dil Modellemede Yumuşatma Yöntemleri

•!: derlem boyutu, #: dağarcık boyutu
• En yüksek olasılık kestirimi: $ %& = ((*+)

-
• Laplace (bir ekleme): $∗ %& = (*+ /0

-/1
• Sabit (d) azaltma: Eğer 2(%&) > 0 ise $∗ %& = (*+ 56

-
Arda kalan olasılık görülmeyen sözcüklere dağıtılır.

•Good-Turing
• Kneser-Ney

Daha düşük derece modelleri kullanma

• Ara değerleme (interpolation):
!" #$ #$%& = (" #$ #$%& + (1−()"(#$)

•Unutma (back-off):

!" #$ #$%& = ./ #$%&,#$ > 0 ise "∗(#$|#$%&)
değilse ; #$%& !"(#$)

"∗(#$|#$%&) azaltılmış olasılıklarıdır.

Dil modelleme için yapay öğrenme

• En yüksek entropi (MaxEnt)
•Öznitelik temelli bir yaklaşım: !(#$, ℎ$)
•Doğrusal kısıtlar için üstel bir dağılım tanımlar:

(#$ ℎ$ = *+,,- ./,0/ 1

∑.*+,,- .,0/ 1
• Ayırıcı (ayrımsayıcı – discriminative) dil modelleri
• Sadece doğruları değil yanlışları de dikkate alır
•Doğrusal veya log-doğrusal (= üstel) modeller

Akustik Modellerin Kestirimi

•Üretici
• En yüksek olabilirlik kestirimi

•Ayırıcı (ayrımsayıcı)
• Koşullu en yüksek olabilirlik
• En yüksek ortak bilgi kestirimi
• En düşük (sesçik/sözcük) hata oranı kestirimi
• En düşük Bayes riski kestirimi

Saklı Markov Modelleri için
En Yüksek Olabilirlik Kestirimi
•Baum-Welch Algoritması
• Bir beklenti-(en)büyütme (Expectation-Maximization)

Algoritması
• İki adımdan oluşan döngüsel bir yöntem
• Beklenti adımında bir önceki döngüdeki parametreler

kullanılarak logaritmik olabilirlik fonksiyonunun beklenen
değeri hesaplanır. Bu değer logaritmik olabilirlik
fonksiyonunun bir alt sınırıdır.
• (En)büyütme adımında ise bu alt sınırı (en)iyileyen

parametre değerleri bulunur.

Beklenti (En)Büyütme Algoritması

•Model: !, gözlenen değişken: ", saklı değişken: #
• Log olabilirlik: ℒ ! " = log∏* + ,* ! =∑* log+ ,* !
• Tüm log olabilirlik: ℒ. ! ",# = ∑* log+ ,*, 0* !

• Beklenti: 1 ! !2 = 3[ℒ. ! ",# |",!2]
• (En)büyütme: !278 = argmax= 1(!|!2)
• Teorem: 1 !@ ! ≥ 1 ! ! ise ℒ !′ " ≥ ℒ ! "

İleri (Forward) Algoritması

!"($) ≡ '(()", +" = -.)

1. Başlangıç:
!) $ = ' () +) = -.

2. Yineleme: / = 2,…,2 −1
!"5) 6 = 7

.
!" $ (.8 ' ("5) +"5) = -8

3. Son: 9 : Λ < = ∑. !>($)

The “Forward” ProcedureThe “Forward” ProcedureThe Forward ProcedureThe Forward Procedure

29

The “Forward” ProcedureThe “Forward” ProcedureThe Forward ProcedureThe Forward Procedure

29

Geri (Backward) Algoritması

!"($) ≡ '((")*+ |-" = /0)

1. Başlangıç:
!+ $ = 1

2. Yineleme: 2 = 3 − 1,… , 1
!" $ = 7

8
(08!")* 9 ' (")* -")* = /8

The “Forward” ProcedureThe “Forward” ProcedureThe Forward ProcedureThe Forward Procedure

29

The “Backward” AlgorithmThe “Backward” AlgorithmThe Backward AlgorithmThe Backward Algorithm
EConsider the backward variable, (), defined as the probability oft i

E O

�the partial observation sequence from 1 to the end, given state
 at time , and the model, i.e.,

() (|)
i

t
S t

i P O O O SE O� � 1 2 () (... | ,)t t t T t ii P O O O q S

1
Inductive Solution :

I iti li ti
E d d

1.
 () 1, 1
2

T i i N
Initialization

Induction

E E� �

 � � d d¦ 1 1
1

2.

() () (), 1, 2,...,1, 1
N

t ij j t t
j

i a b O j t T T i N

Induction

30
�

1

2 calculations, same as in forward case
j

N T

Beklenen değerlerin hesaplanması

• Beklenen durum geçiş sayıları
!" #, % ≡ '()" = +,,)"-. = +/|1.2, Λ)

!" #, % = 5" # 1,/6 1"-.)"-. = +/ 7"-.(%)
∑,9 ∑/9 5" #: 1,9/96 1"-.)"-. = +/9 7"-.(%′)

• Beklenen durum bulunma sayıları
<"(#) ≡ '()" = +,|1.2, Λ)

<" # =
5" # 7"(#)

∑,9 5" #: 7"(#′)
==

/
!"(#, %)

Model Parametrelerinin Güncellenmesi

•Geçiş olasılıkları

!"#$ =
∑' ('(*, ,)
∑' .'(*)

•Gauss çıktı dağılımı için ortalama ve değişinti (varyans)

0̂# =
∑' .' * "'
∑' .'(*)

!1#2 =
∑3 43 # (536789):

∑3 43(#)

Konuşma Tanıma için
Derin Öğrenme

Derin Öğrenme ve Yapay Sinir Ağları

• «Derin» derken yapay sinir ağlarının mimarisi (katman sayısı)
kastedilmektedir.

• YSA derinleştikçe veri gösterimi de öğrenilmekte ve verinin
önceden işlenmesine ihtiyaç azalmaktadır.

• Konuşma tanımada Mel Frekans Kepstral Katsayıları (MFCC)
yerini büyük ölçüde log(-mel) enerji özniteliklerine
bırakmıştır.

Konuşma Tanıma için Yapay Sinir Ağları

• Bir sınıflandırma yöntemi olan yapay sinir ağları
sınıflandırmanın yanı sıra sınıflar üzerinden bir olasılık
dağılımı da üretebilir.

• Bunun için çıkış katmanındaki çıktıların negatif olmayan ve
toplamı bir olan değerler olması gerekir.

• Bu nedenle çıkış katmanında «softmax» işlevi kullanılır.

Dil Modelleme için Yapay Sinir Ağları

•Giriş katmanında geçmişe ait sözcük(ler) !"#$%&,…,!"#&
sadece o sözcüğe karşılık gelen girdi 1, diğerleri 0 olacak
şekilde oluşturulan vektörleri,
• İlk (doğrusal) ortak katmanda sözcüklerin sürekli bir uzaydaki

vektör gösterimleri,
• Çıkış katmanında da tahmin edilen sözcükler !" bulunur.

• Bu istenen koşullu olasılığı verir:) !" !"#$%&,…,!"#&

İleri Beslemeli Sinir Ağları
0
.
.
.
0
1
0
0

0
0
1
0
.
.
.
0

1
0
0
0
.
.
.
0

c o

M V

P(w
j
=1|hj)

P(w
j
=i|hj)

P(w
j
=N|hj)

P(w
j
=i|hj)

Projection
layer

Hidden layers

w
j-n+1

w
j-n+2

w
j-1

b
k

Output
layer

(n-1) x P

M
1

b
1 b

k

M
k

Yinelemeli (Özyineli) Sinir Ağları!

P(wt=i|wt)1,ht)2)!

Output!
layer!

Recursive!!
Hidden!layer!

Projection!
layer!

Input!layer!

wt)1!

Uzun Kısa-Süreli Bellek (LSTM)
ing units. The final unit is depicted in Fig. 1, where we have
included two modifications of the original LSTM unit proposed
in [12] and [13].

Figure 1: LSTM memory cell with gating units

A standard neural network unit i only consists of the input
activation ai and the output activation bi which are related—
when a tanh activation function is used—by

bi = tanh(ai).

The LSTM unit adds several intermediate steps: After applying
the activation function to ai, the result is multiplied by a fac-
tor b◆. Then the inner activation value of the previous time step,
multiplied by the quantity b� is added due to the recurrent self-
connection. Finally, the result is scaled by b! and fed to another
activation function, yielding bi. The factors b◆, b�, b! 2 (0, 1),
indicated by the small white circles, are controlled by additional
units (depicted as blue circles) called input, output, and forget
gate, respectively. The gating units sum the activations of the
previous hidden layer and the activations of the current layer
from the previous time step as well as the inner activation of
the LSTM unit. The resulting value is squashed by a logistic
sigmoid function which then is set to b◆, b�, or b! , respectively.

For brevity, we omit the rather extensive equations describ-
ing the LSTM network. These can be found e. g. in [14]1.

The whole LSTM unit including the gating units may be in-
terpreted as a differentiable version of computer memory ([14]).
For this reason, LSTM units sometimes are also referred to as
LSTM memory cells. Whether one adheres to the proposed in-
terpretation of the gating units or not, the LSTM architecture
solves the vanishing gradient problem at small computational
extra-costs. In addition, it has the desirable property of includ-
ing standard recurrent neural network units as a special case.

3. Neural network language models
Although there are several differences in the neural network lan-
guage models that have been successfully applied so far, all of
them share some basic principles:

• The input words are encoded by 1-of-K coding where K
is the number of words in the vocabulary.

• At the output layer, a softmax activation function is used
to produce correctly normalized probability values.

1As opposed to our LSTM version, in [14] the gating units do not
receive the activations of the previous hidden layer

• As training criterion the cross entropy error is used
which is equivalent to maximum likelihood.

We also follow this approach. It is generally advised to normal-
ize the input data of a neural network ([15]) which means that a
linear transformation is applied so that the data have zero mean
and unit variance. When using 1-of-K coding, this is obviously
not the case.

Giving up the sparseness of the input features (which is usu-
ally exploited to speed up matrix computations, cf. [16]), the
data can easily be normalized because there exist closed-form
solutions for the mean and variance of the 1-of-K encoded input
features that depend only on the unigram counts of the words
observed in the training data. On the contrary we observed that
convergence was considerably slowed down by normalization.
It seems that it suffices when the input data in each dimension
lie in the same [0, 1] range.

As the input features are highly correlated (e. g., we have
xi = 1 �

P
i 6=j xi) for the i-th dimension of an input vari-

able x), applying a whitening transform to the features appears
to be more promising. Because of the high dimensionality, this
seems practically unfeasible.

Regarding the network topology, in [6] a single recurrent
hidden layer was used, while in [3] an architecture with two
hidden layers was applied, the first layer having the interpreta-
tion of projecting the input words to a continuous space. In a
similar spirit, we stick to the topology shown in Fig. 2 where
we plug in LSTM units into the second recurrent layer, combin-
ing it with different projection layers of standard neural network
units.

Figure 2: Neural network LM architecture

For large-vocabulary language modeling, training is
strongly dominated by the computation of the input activa-
tions ai of the softmax output layer which in contrast to the
input layer is not sparse:

ai =
JX

j=1

!ijbj .

Here, J denotes the number of nodes in the last hidden layer,
!ij are the weights between the last hidden layer and the output
layer, and i = 1, . . . , V , where V is the vocabulary size.

To reduce the computational effort, in [17] (following an
idea from [18]), it was proposed to split the words into a set of
disjoint word classes. Then the probability p(wm|wm�1

1) can
be factorized as follows:

p(wm|wm�1
1) = p

�
wm|c(wm), wm�1

1

�
p
�
c(wm)|wm�1

1

�

• Bir özyineli (yinelemeli) sinir ağı türüdür.
• Daha uzun etkileşimleri modelleyebilir.

girdi kapısı

çıktı kapısı

unutma kapısı

Tek ve Çift Yönlü Yinelemeli Sinir Ağları

Input

Output

Hidden

Input

Output

Hidden

t-1 t

Input

Output

Hidden

t-1 t

Hidden

Input

Output

Hidden

Hidden

Forward States

Backward States

Akustik Modellemede Yapay Sinir Ağları

•Giriş katmanında bir zamana ait öznitelik vektörü !"
• Çıkış katmanında da Markov modelinin durumları #"
bulunur.

• Bu bir sonsal olasılık verir: $ #" !"
• Bayes kuralıyla durum çıktı olasılık dağılımı elde edilir.

% !" #" ∝ $ #" !" /$(#")

İleri Beslemeli Sinir Ağları

Zaman Gecikmeli Sinir Ağları

3. Neural network architecture
When processing a wider temporal context, in a standard DNN,
the initial layer learns an affine transform for the entire temporal
context. However in a TDNN architecture the initial transforms
are learnt on narrow contexts and the deeper layers process the
hidden activations from a wider temporal context. Hence the
higher layers have the ability to learn wider temporal relation-
ships. Each layer in a TDNN operates at a different temporal
resolution, which increases as we go to higher layers of the net-
work.

Further, during back-propagation, the lower layers of the
network are updated by a gradient accumulated over all the time
steps of the input temporal context. Thus the lower layers of the
network are forced to learn translation invariant feature trans-
forms [2].

t-13 t+9

t+7

t+5 t-10

t-7 t+2

t-1 t-4

t-8 t-5 t-2 t+1 t+4 t-11

-7 +2

-3 +3 -3 +3

-1 +2 -1 +2 -1 +2 -1 +2

Layer 4

Layer 3

Layer 2

Layer 1 +2 -2

Figure 1: Computation in TDNN with sub-sampling (red) and
without sub-sampling (blue+red)

The hyper-parameters which define the TDNN network are
the input contexts of each layer required to compute an output
activation, at one time step. A sample TDNN network is shown
in Figure 1. The figure shows the time steps at which activations
are computed, at each layer, and dependencies between activa-
tions across layers. It can be seen that the dependencies across
layers are localized in time. Layerwise context specification,
corresponding to this TDNN, is shown in column 2 of Table 1.

3.1. Sub-sampling

In a typical TDNN, hidden activations are computed at all time
steps. However there are large overlaps between input contexts
of of activations computed at neighboring time steps. Under the
assumption that neighboring activations are correlated, they can
be sub-sampled.

Our approach is, rather than splicing together contiguous

Table 1: Context specification of TDNN in Figure 1

Layer Input context Input context with sub-sampling
1 [�2,+2] [�2, 2]
2 [�1, 2] {�1, 2}
3 [�3, 3] {�3, 3}
4 [�7, 2] {�7, 2}
5 {0} {0}

temporal windows of frames at each layer, to allow gaps be-
tween the frames. In fact, in the hidden layers of the network,
we generally splice no more than two frames. For instance, the
notation {�7, 2} means we splice together the input at the cur-
rent frame minus 7 and the current frame plus 2. Figure 1 shows
this pictorially.

Empirically we found that what seems to work best is to
splice together increasingly wide context as we go to higher
layers of the network. The configuration in Figure 1, which is
fairly typical, splices together frames t� 2 through t+ 2 at the
input layer (which we could write as context {�2,�1, 0, 1, 2}
or more compactly as [�2, 2]); and then at three hidden layers
we splice frames at offsets {�1, 2}, {�3, 3} and {�7, 2}. Ta-
ble 1 tabulates these contexts (on the right), and compares with
a hypothetical setup without sub-sampling. The fact that the
differences between the offsets at the hidden layers were cho-
sen to all be multiples of 3 is not a coincidence. We designed it
this way in order to ensure that for each output frame, we need
to evaluate the smallest possible number of hidden layers. The
frames in red in Figure 1 are the ones we need to evaluate.

Sub-sampling at the middle of the network was also used in
stacked bottle-neck networks [14]. In this architecture bottle-
neck features were spliced across non-contiguous time steps
and used as an input to a second neural network. However the
bottle-neck network was not trained jointly with the final neural
network.

With the current sub-sampling scheme the overall necessary
computation is reduced during the forward pass and backprop-
agation, due to selective computation of time steps. Another
advantage of using sub-sampling is the reduction in the model
size. Splicing contiguous frames at hidden layers would require
us to either have a very large number of parameters, or reduce
the hidden-layer size significantly.

We use asymmetric input contexts, with more context to
the left, as this reduces the latency of the neural network in on-
line decoding, and also because this seems to be more optimal
from a WER perspective. Asymmetric context windows of up
to 16 frames in past and 9 frames in the future were explored
in this paper. It was observed that further extension of con-
text on either side was detrimental to word recognition accu-
racies, though the frame recognition accuracies improved (this
phenomenon is widely known).

A major difference in the current architecture compared to
[2] is the use of the p-norm nonlinearity [15], which is a di-
mension reducing non-linearity. p-norm units with group size
of 10 and p = 2 were used across all neural networks in our
experiments, based on the observations made in [15]. More re-
cent experiments in our TDNN framework show that that ReLU
nonlinearity may actually perform better in this context than p-
norm, but the full details were not ready in time for this paper.

Waibel et al 1989

Peddinti et al 2015

Evrişimsel Sinir AğlarıABDEL-HAMID et al.: CONVOLUTIONAL NEURAL NETWORKS FOR SPEECH RECOGNITION 1537

two dimensional feature maps are used (where 2-D convolution

is applied to the above equation), as described in the previous

section. Note that, in this presentation, the number of feature

maps in the convolution ply directly determines the number of

local weight matrices that are used in the above convolutional

mapping. In practice, we will constrain many of these weight

matrices to be identical. It is also important to remember that

the windows through which we view the input and apply one of

these weight matrices will generally overlap. The convolution

operation itself produces lower-dimensional data—each dimen-

sion decreases by filter size minus one—but we can pad the

input with dummy values (both dummy time frames and dummy

frequency bands) to preserve the size of the feature maps. As a

result, there could in principle be as many locations in the fea-

ture map of the convolution ply as there are in the input.

A convolution ply differs from a standard, fully connected

hidden layer in two important aspects, however. First, each con-

volutional unit receives input only from a local area of the input.

This means that each unit represents some features of a local re-

gion of the input. Second, the units of the convolution ply can

themselves be organized into a number of feature maps, where

all units in the same feature map share the same weights but re-

ceive input from different locations of the lower layer.

C. Pooling Ply

As shown in Fig. 2, a pooling operation is applied to the

convolution ply to generate its corresponding pooling ply. The

pooling ply is also organized into feature maps, and it has the

same number of feature maps as the number of feature maps

in its convolution ply, but each map is smaller. The purpose of

the pooling ply is to reduce the resolution of feature maps. This

means that the units of this ply will serve as generalizations over

the features of the lower convolution ply, and, because these

generalizations will again be spatially localized in frequency,

they will also be invariant to small variations in location. This

reduction is achieved by applying a pooling function to several

units in a local region of a size determined by a parameter called

pooling size. It is usually a simple function such asmaximization
or averaging. The pooling function is applied to each convolu-
tion featuremap independently.When themax-pooling function

is used, the pooling ply is defined as:

(10)

where is the pooling size, and , the shift size, determines the
overlap of adjacent pooling windows. Similarly, if the average

function is used, the output is calculated as:

(11)

where is a scaling factor that can be learned. In image recogni-

tion applications, under the constraint that , i.e., in which

the pooling windows do not overlap and have no spaces between

them, it has been claimed that max-pooling performs better than

average-pooling [44]. In this work we will adjust and in-

dependently. Moreover, a non-linear activation function can be

applied to the above to generate the final output. Fig. 3

Fig. 3. An illustration of the regular CNN that uses so-called full weight

sharing. Here, a 1-D convolution is applied along frequency bands.

shows a pooling ply with a pooling size of three. Each pooling

unit receives input from three convolution ply units in the same

feature map. If , then the pooling ply would be one-third

of the size of the convolution ply.

D. Learning Weights in the CNN
All weights in the convolution ply can be learned using the

same error back-propagation algorithm but some special modifi-
cations are needed to take care of sparse connections and weight

sharing. In order to illustrate the learning algorithm for CNN

layers, let us first represent the convolution operation in eq. (9)
in the same mathematical form as the fully connected ANN

layer so that the same learning algorithm in Section II can be

similarly applied.

When one-dimensional feature maps are used, the convolu-

tion operations in eq. (9) can be represented as a simple matrix

multiplication by introducing a large sparse weight matrix as

shown in Fig. 4, which is formed by replicating a basic weight

matrix as in Fig. 4(a). The basic matrix is constructed

from all of the local weight matrices, , as follows:

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

(12)

where is organized as rows, where again denotes

filter size, each band contains rows for input feature maps,

and has columns representing the weights of feature

maps in the convolution ply.

Meanwhile, the input and the convolution feature maps are

also vectorized as row vectors and . One single row vector

is created from all of the input feature maps

as follows:

(13)

Abdel-Hamid et al, «Convolutional Neural Networks for Speech Recognition, IEEE/ACM TASLP 22(10), Oct 2014.

Yinelemeli Sinir Ağları: LSTM
2. LSTM ARCHITECTURES

In the standard architecture of LSTM networks, there are an input
layer, a recurrent LSTM layer and an output layer. The input layer
is connected to the LSTM layer. The recurrent connections in the
LSTM layer are directly from the cell output units to the cell input
units, input gates, output gates and forget gates. The cell output units
are connected to the output layer of the network. The total number
of parameters W in a standard LSTM network with one cell in each
memory block, ignoring the biases, can be calculated as follows:

W = nc ⇥ nc ⇥ 4 + ni ⇥ nc ⇥ 4 + nc ⇥ no + nc ⇥ 3

where nc is the number of memory cells (and number of memory
blocks in this case), ni is the number of input units, and no is the
number of output units. The computational complexity of learning
LSTM models per weight and time step with the stochastic gradient
descent (SGD) optimization technique is O(1). Therefore, the learn-
ing computational complexity per time step is O(W). The learn-
ing time for a network with a relatively small number of inputs is
dominated by the nc ⇥ (nc + no) factor. For the tasks requiring a
large number of output units and a large number of memory cells to
store temporal contextual information, learning LSTM models be-
come computationally expensive.

As an alternative to the standard architecture, we propose two
novel architectures to address the computational complexity of
learning LSTM models. The two architectures are shown in the
same Figure 1. In one of them, we connect the cell output units to
a recurrent projection layer which connects to the cell input units
and gates for recurrency in addition to network output units for the
prediction of the outputs. Hence, the number of parameters in this
model is nc ⇥nr ⇥ 4+ni ⇥nc ⇥ 4+nr ⇥no +nc ⇥nr +nc ⇥ 3,
where nr is the number of units in the recurrent projection layer. In
the other one, in addition to the recurrent projection layer, we add
another non-recurrent projection layer which is directly connected to
the output layer. This model has nc⇥nr ⇥4+ni⇥nc⇥4+(nr +
np)⇥ no + nc ⇥ (nr + np) + nc ⇥ 3 parameters, where np is the
number of units in the non-recurrent projection layer and it allows
us to increase the number of units in the projection layers without
increasing the number of parameters in the recurrent connections
(nc ⇥ nr ⇥ 4). Note that having two projection layers with regard
to output units is effectively equivalent to having a single projection
layer with nr + np units.

An LSTM network computes a mapping from an input sequence
x = (x1, ..., xT) to an output sequence y = (y1, ..., yT) by cal-
culating the network unit activations using the following equations
iteratively from t = 1 to T :

it = �(Wixxt +Wimmt�1 +Wicct�1 + bi) (1)
ft = �(Wfxxt +Wmfmt�1 +Wcfct�1 + bf) (2)

ct = ft � ct�1 + it � g(Wcxxt +Wcmmt�1 + bc) (3)
ot = �(Woxxt +Wommt�1 +Wocct + bo) (4)

mt = ot � h(ct) (5)
yt = Wymmt + by (6)

where the W terms denote weight matrices (e.g. Wix is the matrix
of weights from the input gate to the input), the b terms denote bias
vectors (bi is the input gate bias vector), � is the logistic sigmoid
function, and i, f , o and c are respectively the input gate, forget gate,
output gate and cell activation vectors, all of which are the same size
as the cell output activation vector m, � is the element-wise product

in
pu

t

g ⇥ ct�1 h

⇥

⇥

it

ft

ct

ot re
cu

rr
en

t
pr

oj
ec

tio
n

ou
tp

ut

xt

mt

pt

rt

rt�1

yt

memory blocks

Fig. 1. LSTM based RNN architectures with a recurrent projection
layer and an optional non-recurrent projection layer. A single mem-
ory block is shown for clarity.

of the vectors and g and h are the cell input and cell output activation
functions, generally tanh.

With the proposed LSTM architecture with both recurrent and
non-recurrent projection layer, the equations are as follows:

it = �(Wixxt +Wirrt�1 +Wicct�1 + bi) (7)
ft = �(Wfxxt +Wrfrt�1 +Wcfct�1 + bf) (8)

ct = ft � ct�1 + it � g(Wcxxt +Wcrrt�1 + bc) (9)
ot = �(Woxxt +Worrt�1 +Wocct + bo) (10)

mt = ot � h(ct) (11)
rt = Wrmmt (12)
pt = Wpmmt (13)

yt = Wyrrt +Wyppt + by (14)
(15)

where the r and p denote the recurrent and optional non-recurrent
unit activations.

2.1. Implementation

We choose to implement the proposed LSTM architectures on multi-
core CPU on a single machine rather than on GPU. The decision
was based on CPU’s relatively simpler implementation complexity
and ease of debugging. CPU implementation also allows easier dis-
tributed implementation on a large cluster of machines if the learn-
ing time of large networks becomes a major bottleneck on a single
machine [14]. For matrix operations, we use the Eigen matrix li-
brary [15]. This templated C++ library provides efficient implemen-
tations for matrix operations on CPU using vectorized instructions
(SIMD – single instruction multiple data). We implemented acti-
vation functions and gradient calculations on matrices using SIMD
instructions to benefit from parallelization.

We use the asynchronous stochastic gradient descent (ASGD)
optimization technique. The update of the parameters with the gra-
dients is done asynchronously from multiple threads on a multi-core
machine. Each thread operates on a batch of sequences in parallel
for computational efficiency – for instance, we can do matrix-matrix
multiplications rather than vector-matrix multiplications – and for
more stochasticity since model parameters can be updated from mul-
tiple input sequence at the same time. In addition to batching of se-
quences in a single thread, training with multiple threads effectively

Haşim Sak, Andrew Senior, Françoise Beaufays, «LSTM based RNN architectures for LVCSR», 2014.

Yapay Sinir Ağlarında Parametre Kestirimi
• Kestirimde çeşitli eniyileme yöntemleri kullanılmaktadır.
• Yaygın olarak (küçük grup) bayır inişi yöntemleri kullanılır:

! ←!−$∇&(!)
•Hata Geri Yayma (Back-Propagation) yönteminde eğim

hesaplanırken türevler için zincir kuralından yararlanılır.
Gizli katman)* = ,(!*-.) Çıktı /0 = 1(20-))

3&
3!*4 =

3&
3/0

3/0
3)*

3)*
3!*4

YSA Kestiriminde Amaç İşlevleri - 1

• Çapraz Entropi! ",$ = −∑("(log$(
ℱ-. = −/

0
/
1
log201(401)

•Dizisel İşlevler
• En büyük ortak bilgi (MMI)

ℱ667 =/
0
log " 80 9(:0) ;<(:0)

∑=" 80 9(:) ;<(:)

YSA Kestiriminde Amaç İşlevleri - 2

•Dizisel İşlevler
En küçük Bayes riski (MBR)

ℱ"#$ =&
'
log∑, - .' / 0 12 0 .(0,0')

∑,6 - .' / 07 12(07)
Burada .(0,0') ham doğruluğu ifade eder.
• En küçük sesçik hatası (MPE): doğru sesçik sayısı
•Durum seviyesi en küçük Bayes riski: doğru durum sayısı

Vesely et al, «Sequence-discriminative training of deep neural networks», Interspeech 2013.

Baştan Sona (Uçtan Uca) Konuşma Tanıma

• Son yıllarda oldukça alt düzey öznitelikler dizilerinden (ve
hatta konuşma sinyalinden) doğrudan harf/sesçik/sözcük
dizileri üreten sistemler önerilmiştir.
• Bu sistemler diziden diziye (seq2seq) modeller kullanırlar.
• İlk olarak girdi gizyazıcı tarafından gömülü bir gösterime

çevrilir, daha sonra da gizçözücü tarafından çıktılar üretilir.
• Bu yaklaşım genelde daha çok veri (ve daha az bilgi?)

gerektirmektedir.

Bağlantıcı Zamansal Sınıflandırma
Connectionist Temporal Classification (CTC)

Figure 1: A schematic representation of various sequence-to-
sequence modeling approaches compared in this work.

sume that the input speech waveform has been suitably parame-
terized in to a sequence of d-dimensional feature vectors, which
we denote by x = (x1,x2, · · · ,xT), where xt 2 Rd. We de-
note the set of grapheme symbols output by the model by Y , and
denote the output sequence by y = (y1, y2, ..., yL). For ASR,
the number of output graphemes, L, is typically much smaller
than the number of acoustic frames, T .

2.1. Connectionist Temporal Classification (CTC)

The CTC criterion was proposed by Graves et al. [13] as a way
of training end-to-end models without requiring a frame-level
alignment of the target labels for a training utterance. CTC aug-
ments the set of target labels with an additional “blank” symbol,
denoted hbi. Given a target label sequence y corresponding to
the utterance x, let B(y,x) be the set of all sequences consist-
ing of the labels in Y [{hbi}, which are of length |x| = T ,
and which are identical to y after first collapsing consecutive
repeated targets and then removing any blank symbols (e.g.,
“xhbixxhbiy ! xxy ”). Thus, any sequence in B(y,x) corre-
sponds to a frame-level assignment of the label sequence in y.
CTC then defines the probability of the output sequence condi-
tioned on the acoustics as:

P (y|x) =
X

ŷ2B(y,x)

TY

t=1

P (ŷt|x) (1)

where, we assume that labels at each time step are independent,
given the acoustics.

The conditional probability of the labels at each time step,
P (ŷt|x), is estimated using a deep recurrent neural network,
which we refer to as the encoder. The encoder computes a se-

quence of vectors henc = (henc
1 , · · · ,henc

T), which are treated
as logits and passed to a single softmax layer which predicts a
probability distribution over the set of blank-augmented output
symbols, Y [{hbi}, as illustrated in Figure 1 (a.). The model
can be trained to maximize Equation 1 by using gradient de-
scent, where the required gradients can be computed using the
forward-backward algorithm [13].

2.2. RNN Transducer

The CTC model is similar to an acoustic model in a traditional
ASR system. The RNN transducer [3, 4] augments the encoder
network from the CTC model architecture with a separate recur-
rent prediction network over the output symbols, as illustrated
in Figure 1 (b.). Intuitively, the encoder can be thought of as an
acoustic model, while the prediction network is analogous to a
language model. The prediction network receives as input the
previous grapheme label prediction, yu�1 2 Y [{hsosi}, and
computes an output vector pu, which is dependent on the en-
tire sequence of labels y0, · · · , yu�1. The special label hsosi,
which indicates the start of the sentence, is input to the predic-
tion network at the first time step, y0.

The encoder outputs henc
t and the prediction outputs pu are

passed to a joint network, which computes output logits zt,u
for each input, t, in the encoder sequence and label, u, from the
prediction network, as follows:

hjoint
t,u = tanh(Ahenc

t +Bpu + b) (2)

zt,u = Dhjoint
t,u + d (3)

where, A,B, b,D, d are parameters of the model. The logits
zt,u are then passed to a softmax layer which defines a prob-
ability distribution over the set of output targets and the blank
symbol (Y [{hbi}), for each combination of acoustic frame t
and output label u.

The model can be optimized using gradient descent by com-
puting the required gradients using a dynamic programming al-
gorithm; we refer the interested reader to [3, 4] for additional
details on training and inference. We note here that inference in
the RNN transducer is performed in a frame-synchronous man-
ner, and thus the model can be used to perform streaming recog-
nition if a unidirectional encoder is used. In this work, however,
we use a bidirectional encoder to ensure that the results are com-
parable to the attention-based model, which uses a bidirectional
encoder.

2.3. Attention-based Models

An attention-based model (e.g., Listen-Attend-and-Spell [6])
contains an encoder network, as in the RNN transducer model.
However, unlike the RNN transducer, in which the encoder and
the prediction network are modeled independently and com-
bined in the joint network, an attention-based model uses a sin-
gle decoder to produce a distribution over the labels conditioned
on the full sequence of previous predictions and the acoustics:
P (yu|yu�1, · · · , y0,x).

The decoder network consists of a number of recurrent lay-
ers. Denoting by hatt

u�1 the state of the lowest layer of the de-
coder after predicting the previous labels, y1, · · · , yu�1, the
model computes attention weights ↵u = (↵1,u, · · · ,↵T,u) for
each frame in the encoder output, henc, in order to compute a

940

Prabhavalkar et al, «A Comparison of Sequence-to-Sequence Models for Speech Recognition», Interspeech 2017.

Özyineli Dönüştürücü Sinir Ağı

Figure 1: A schematic representation of various sequence-to-
sequence modeling approaches compared in this work.

sume that the input speech waveform has been suitably parame-
terized in to a sequence of d-dimensional feature vectors, which
we denote by x = (x1,x2, · · · ,xT), where xt 2 Rd. We de-
note the set of grapheme symbols output by the model by Y , and
denote the output sequence by y = (y1, y2, ..., yL). For ASR,
the number of output graphemes, L, is typically much smaller
than the number of acoustic frames, T .

2.1. Connectionist Temporal Classification (CTC)

The CTC criterion was proposed by Graves et al. [13] as a way
of training end-to-end models without requiring a frame-level
alignment of the target labels for a training utterance. CTC aug-
ments the set of target labels with an additional “blank” symbol,
denoted hbi. Given a target label sequence y corresponding to
the utterance x, let B(y,x) be the set of all sequences consist-
ing of the labels in Y [{hbi}, which are of length |x| = T ,
and which are identical to y after first collapsing consecutive
repeated targets and then removing any blank symbols (e.g.,
“xhbixxhbiy ! xxy ”). Thus, any sequence in B(y,x) corre-
sponds to a frame-level assignment of the label sequence in y.
CTC then defines the probability of the output sequence condi-
tioned on the acoustics as:

P (y|x) =
X

ŷ2B(y,x)

TY

t=1

P (ŷt|x) (1)

where, we assume that labels at each time step are independent,
given the acoustics.

The conditional probability of the labels at each time step,
P (ŷt|x), is estimated using a deep recurrent neural network,
which we refer to as the encoder. The encoder computes a se-

quence of vectors henc = (henc
1 , · · · ,henc

T), which are treated
as logits and passed to a single softmax layer which predicts a
probability distribution over the set of blank-augmented output
symbols, Y [{hbi}, as illustrated in Figure 1 (a.). The model
can be trained to maximize Equation 1 by using gradient de-
scent, where the required gradients can be computed using the
forward-backward algorithm [13].

2.2. RNN Transducer

The CTC model is similar to an acoustic model in a traditional
ASR system. The RNN transducer [3, 4] augments the encoder
network from the CTC model architecture with a separate recur-
rent prediction network over the output symbols, as illustrated
in Figure 1 (b.). Intuitively, the encoder can be thought of as an
acoustic model, while the prediction network is analogous to a
language model. The prediction network receives as input the
previous grapheme label prediction, yu�1 2 Y [{hsosi}, and
computes an output vector pu, which is dependent on the en-
tire sequence of labels y0, · · · , yu�1. The special label hsosi,
which indicates the start of the sentence, is input to the predic-
tion network at the first time step, y0.

The encoder outputs henc
t and the prediction outputs pu are

passed to a joint network, which computes output logits zt,u
for each input, t, in the encoder sequence and label, u, from the
prediction network, as follows:

hjoint
t,u = tanh(Ahenc

t + Bpu + b) (2)

zt,u = Dhjoint
t,u + d (3)

where, A, B, b, D, d are parameters of the model. The logits
zt,u are then passed to a softmax layer which defines a prob-
ability distribution over the set of output targets and the blank
symbol (Y [{hbi}), for each combination of acoustic frame t
and output label u.

The model can be optimized using gradient descent by com-
puting the required gradients using a dynamic programming al-
gorithm; we refer the interested reader to [3, 4] for additional
details on training and inference. We note here that inference in
the RNN transducer is performed in a frame-synchronous man-
ner, and thus the model can be used to perform streaming recog-
nition if a unidirectional encoder is used. In this work, however,
we use a bidirectional encoder to ensure that the results are com-
parable to the attention-based model, which uses a bidirectional
encoder.

2.3. Attention-based Models

An attention-based model (e.g., Listen-Attend-and-Spell [6])
contains an encoder network, as in the RNN transducer model.
However, unlike the RNN transducer, in which the encoder and
the prediction network are modeled independently and com-
bined in the joint network, an attention-based model uses a sin-
gle decoder to produce a distribution over the labels conditioned
on the full sequence of previous predictions and the acoustics:
P (yu|yu�1, · · · , y0,x).

The decoder network consists of a number of recurrent lay-
ers. Denoting by hatt

u�1 the state of the lowest layer of the de-
coder after predicting the previous labels, y1, · · · , yu�1, the
model computes attention weights ↵u = (↵1,u, · · · ,↵T,u) for
each frame in the encoder output, henc, in order to compute a

940

Prabhavalkar et al, «A Comparison of Sequence-to-Sequence Models for Speech Recognition», Interspeech 2017.

Dinle, Dikkat et, Yaz
Chan et al, «Listen, Attend and Spell», 2015

We want to model each character output yi as a conditional distribution over the previous characters
y<i and the input signal x using the chain rule:

P (y|x) =
Y

i

P (yi|x, y<i) (1)

Our Listen, Attend and Spell (LAS) model consists of two sub-modules: the listener and the speller.
The listener is an acoustic model encoder, whose key operation is Listen. The speller is an attention-
based character decoder, whose key operation is AttendAndSpell. The Listen function transforms
the original signal x into a high level representation h = (h1, . . . , hU) with U T , while the
AttendAndSpell function consumes h and produces a probability distribution over character se-
quences:

h = Listen(x) (2)
P (y|x) = AttendAndSpell(h,y) (3)

Figure 1 visualizes LAS with these two components. We provide more details of these components
in the following sections.

x1 x2 xT

h2 hUh1

x3 x4 x5 x6 x7 x8

h = (h1, . . . , hU)

y2 y3

hsosi

heosi

y2 y3

y4

yS�1

c1 c2

Speller

Long input sequence x is encoded with the pyramidal
BLSTM Listen into shorter sequence h

Listener

Grapheme characters yi are
modelled by the
CharacterDistribution

AttentionContext creates
context vector ci from h
and si

s1 s2

h h h

Figure 1: Listen, Attend and Spell (LAS) model: the listener is a pyramidal BLSTM encoding our input
sequence x into high level features h, the speller is an attention-based decoder generating the y characters
from h.

3

Dikkat Tabanlı Model

Figure 1: A schematic representation of various sequence-to-
sequence modeling approaches compared in this work.

sume that the input speech waveform has been suitably parame-
terized in to a sequence of d-dimensional feature vectors, which
we denote by x = (x1,x2, · · · ,xT), where xt 2 Rd. We de-
note the set of grapheme symbols output by the model by Y , and
denote the output sequence by y = (y1, y2, ..., yL). For ASR,
the number of output graphemes, L, is typically much smaller
than the number of acoustic frames, T .

2.1. Connectionist Temporal Classification (CTC)

The CTC criterion was proposed by Graves et al. [13] as a way
of training end-to-end models without requiring a frame-level
alignment of the target labels for a training utterance. CTC aug-
ments the set of target labels with an additional “blank” symbol,
denoted hbi. Given a target label sequence y corresponding to
the utterance x, let B(y,x) be the set of all sequences consist-
ing of the labels in Y [{hbi}, which are of length |x| = T ,
and which are identical to y after first collapsing consecutive
repeated targets and then removing any blank symbols (e.g.,
“xhbixxhbiy ! xxy ”). Thus, any sequence in B(y,x) corre-
sponds to a frame-level assignment of the label sequence in y.
CTC then defines the probability of the output sequence condi-
tioned on the acoustics as:

P (y|x) =
X

ŷ2B(y,x)

TY

t=1

P (ŷt|x) (1)

where, we assume that labels at each time step are independent,
given the acoustics.

The conditional probability of the labels at each time step,
P (ŷt|x), is estimated using a deep recurrent neural network,
which we refer to as the encoder. The encoder computes a se-

quence of vectors henc = (henc
1 , · · · ,henc

T), which are treated
as logits and passed to a single softmax layer which predicts a
probability distribution over the set of blank-augmented output
symbols, Y [{hbi}, as illustrated in Figure 1 (a.). The model
can be trained to maximize Equation 1 by using gradient de-
scent, where the required gradients can be computed using the
forward-backward algorithm [13].

2.2. RNN Transducer

The CTC model is similar to an acoustic model in a traditional
ASR system. The RNN transducer [3, 4] augments the encoder
network from the CTC model architecture with a separate recur-
rent prediction network over the output symbols, as illustrated
in Figure 1 (b.). Intuitively, the encoder can be thought of as an
acoustic model, while the prediction network is analogous to a
language model. The prediction network receives as input the
previous grapheme label prediction, yu�1 2 Y [{hsosi}, and
computes an output vector pu, which is dependent on the en-
tire sequence of labels y0, · · · , yu�1. The special label hsosi,
which indicates the start of the sentence, is input to the predic-
tion network at the first time step, y0.

The encoder outputs henc
t and the prediction outputs pu are

passed to a joint network, which computes output logits zt,u
for each input, t, in the encoder sequence and label, u, from the
prediction network, as follows:

hjoint
t,u = tanh(Ahenc

t + Bpu + b) (2)

zt,u = Dhjoint
t,u + d (3)

where, A, B, b, D, d are parameters of the model. The logits
zt,u are then passed to a softmax layer which defines a prob-
ability distribution over the set of output targets and the blank
symbol (Y [{hbi}), for each combination of acoustic frame t
and output label u.

The model can be optimized using gradient descent by com-
puting the required gradients using a dynamic programming al-
gorithm; we refer the interested reader to [3, 4] for additional
details on training and inference. We note here that inference in
the RNN transducer is performed in a frame-synchronous man-
ner, and thus the model can be used to perform streaming recog-
nition if a unidirectional encoder is used. In this work, however,
we use a bidirectional encoder to ensure that the results are com-
parable to the attention-based model, which uses a bidirectional
encoder.

2.3. Attention-based Models

An attention-based model (e.g., Listen-Attend-and-Spell [6])
contains an encoder network, as in the RNN transducer model.
However, unlike the RNN transducer, in which the encoder and
the prediction network are modeled independently and com-
bined in the joint network, an attention-based model uses a sin-
gle decoder to produce a distribution over the labels conditioned
on the full sequence of previous predictions and the acoustics:
P (yu|yu�1, · · · , y0,x).

The decoder network consists of a number of recurrent lay-
ers. Denoting by hatt

u�1 the state of the lowest layer of the de-
coder after predicting the previous labels, y1, · · · , yu�1, the
model computes attention weights ↵u = (↵1,u, · · · ,↵T,u) for
each frame in the encoder output, henc, in order to compute a

940

Prabhavalkar et al, «A Comparison of Sequence-to-Sequence Models for Speech Recognition», Interspeech 2017.

Dikkat İçeren Özyineli Dönüştürücü Sinir Ağı

Figure 1: A schematic representation of various sequence-to-
sequence modeling approaches compared in this work.

sume that the input speech waveform has been suitably parame-
terized in to a sequence of d-dimensional feature vectors, which
we denote by x = (x1,x2, · · · ,xT), where xt 2 Rd. We de-
note the set of grapheme symbols output by the model by Y , and
denote the output sequence by y = (y1, y2, ..., yL). For ASR,
the number of output graphemes, L, is typically much smaller
than the number of acoustic frames, T .

2.1. Connectionist Temporal Classification (CTC)

The CTC criterion was proposed by Graves et al. [13] as a way
of training end-to-end models without requiring a frame-level
alignment of the target labels for a training utterance. CTC aug-
ments the set of target labels with an additional “blank” symbol,
denoted hbi. Given a target label sequence y corresponding to
the utterance x, let B(y,x) be the set of all sequences consist-
ing of the labels in Y [{hbi}, which are of length |x| = T ,
and which are identical to y after first collapsing consecutive
repeated targets and then removing any blank symbols (e.g.,
“xhbixxhbiy ! xxy ”). Thus, any sequence in B(y,x) corre-
sponds to a frame-level assignment of the label sequence in y.
CTC then defines the probability of the output sequence condi-
tioned on the acoustics as:

P (y|x) =
X

ŷ2B(y,x)

TY

t=1

P (ŷt|x) (1)

where, we assume that labels at each time step are independent,
given the acoustics.

The conditional probability of the labels at each time step,
P (ŷt|x), is estimated using a deep recurrent neural network,
which we refer to as the encoder. The encoder computes a se-

quence of vectors henc = (henc
1 , · · · ,henc

T), which are treated
as logits and passed to a single softmax layer which predicts a
probability distribution over the set of blank-augmented output
symbols, Y [{hbi}, as illustrated in Figure 1 (a.). The model
can be trained to maximize Equation 1 by using gradient de-
scent, where the required gradients can be computed using the
forward-backward algorithm [13].

2.2. RNN Transducer

The CTC model is similar to an acoustic model in a traditional
ASR system. The RNN transducer [3, 4] augments the encoder
network from the CTC model architecture with a separate recur-
rent prediction network over the output symbols, as illustrated
in Figure 1 (b.). Intuitively, the encoder can be thought of as an
acoustic model, while the prediction network is analogous to a
language model. The prediction network receives as input the
previous grapheme label prediction, yu�1 2 Y [{hsosi}, and
computes an output vector pu, which is dependent on the en-
tire sequence of labels y0, · · · , yu�1. The special label hsosi,
which indicates the start of the sentence, is input to the predic-
tion network at the first time step, y0.

The encoder outputs henc
t and the prediction outputs pu are

passed to a joint network, which computes output logits zt,u
for each input, t, in the encoder sequence and label, u, from the
prediction network, as follows:

hjoint
t,u = tanh(Ahenc

t + Bpu + b) (2)

zt,u = Dhjoint
t,u + d (3)

where, A, B, b, D, d are parameters of the model. The logits
zt,u are then passed to a softmax layer which defines a prob-
ability distribution over the set of output targets and the blank
symbol (Y [{hbi}), for each combination of acoustic frame t
and output label u.

The model can be optimized using gradient descent by com-
puting the required gradients using a dynamic programming al-
gorithm; we refer the interested reader to [3, 4] for additional
details on training and inference. We note here that inference in
the RNN transducer is performed in a frame-synchronous man-
ner, and thus the model can be used to perform streaming recog-
nition if a unidirectional encoder is used. In this work, however,
we use a bidirectional encoder to ensure that the results are com-
parable to the attention-based model, which uses a bidirectional
encoder.

2.3. Attention-based Models

An attention-based model (e.g., Listen-Attend-and-Spell [6])
contains an encoder network, as in the RNN transducer model.
However, unlike the RNN transducer, in which the encoder and
the prediction network are modeled independently and com-
bined in the joint network, an attention-based model uses a sin-
gle decoder to produce a distribution over the labels conditioned
on the full sequence of previous predictions and the acoustics:
P (yu|yu�1, · · · , y0,x).

The decoder network consists of a number of recurrent lay-
ers. Denoting by hatt

u�1 the state of the lowest layer of the de-
coder after predicting the previous labels, y1, · · · , yu�1, the
model computes attention weights ↵u = (↵1,u, · · · ,↵T,u) for
each frame in the encoder output, henc, in order to compute a

940

Prabhavalkar et al, «A Comparison of Sequence-to-Sequence Models for Speech Recognition», Interspeech 2017.

3 Temmuz Salı: Ses ve Konuşma İşleme Günü

• IEEE Signal Processing Society Distinguished Industry Speaker
Speech Recognition: What's Left? Michael Picheny
• Türkçe için Konuşma Tanıma ve Derin Öğrenmeyle Dil Modelleme Ebru

Arısoy
• Tek ve Çok Kanallı Ses Kaynağı Ayırma için Derin Öğrenme Hakan Erdoğan

• Duygulanımsal Konuşma ve İşmar Modelleri için Derin Öğrenme Engin Erzin
• Konuşma Sentezi Cenk Demiroğlu

• Karma Gerçeklik için Ses Etkileşimleri Cumhur Erkut

http://byoyo.cmpe.boun.edu.tr/
http://byoyo.cmpe.boun.edu.tr/
http://byoyo.cmpe.boun.edu.tr/
http://byoyo.cmpe.boun.edu.tr/
http://byoyo.cmpe.boun.edu.tr/
http://byoyo.cmpe.boun.edu.tr/

Pek Yakında …

Turkish Natural Language Processing
Kemal Oflazer, Murat Saraçlar Editors

• Ch. 4: Language Modeling for Turkish
Text and Speech Processing
Arısoy and Saraçlar

• Ch. 5: Turkish Speech Recognition
Arısoy and Saraçlar

