Konuşma Tanıma için Yapay Öğrenme

Murat SARAÇLAR

Boğaziçi Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü

Murat SARAÇLAR http://busim.ee.boun.edu.tr/~murat/

- 1994 Bilkent U. EE (BS)
- 2000 Johns Hopkins U. (MS, PhD)
- 2000-2005 AT&T Labs Research
- 2005- Boğaziçi U. EE
- 2011-2012 Google Inc.
- 2012-2013 IBM T.J. Watson Research Center
- 2013- Özgür Deniz 😳

Özet

- Konuşma Tanıma
- İstatistiksel Modeller
- Yapay Öğrenme
- Derin Öğrenme

Konuşma Tanıma

Tanımlar Yaklaşımlar Uygulamalar

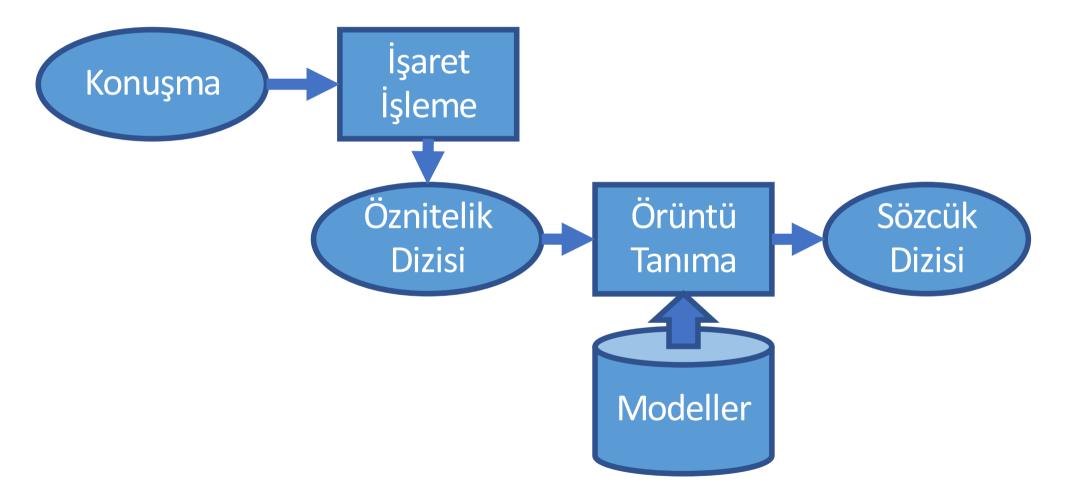
Konuşma Tanıma: Tanımlar

- (Otomatik) Konuşma Tanıma:
- = (Automatic) Speech Recognition
- Konuşmanın yazıya dökülmesi (yazılandırma = transcription)

Konuşma Tanıma: Girdi ve Çıktılar

- Girdi: Konuşma «sinyali»
 - Sayısallaştırılmış (8-16 kHz, 8-16 bit)
- Ara gösterim: Öznitelikler dizisi
 - Konuşmada bilgi sinyalin zaman-frekans içeriğindedir
 - İşaret işleme yöntemleriyle elde edilen öznitelikler
 - Vektör dizisi (yaklaşık olarak saniyede 100 tane)
- Çıktı: Kelime dizisi
 - Varsayım: sonlu dağarcık

Konuşma Tanıma: Sistem



Konuşma Tanıma: Yaklaşımlar

- Örüntü eşleştirme
- İstatistiksel modelleme
- Derin öğrenme

Konuşma Tanıma: Uygulamalar

- Dikte (bilgisayar, cep telefonu, ...)
- İnsan bilgisayar (makina) arayüzü
- Telefon üzerinden etkileşim (örn. müşteri hizmetleri)
- Ses içeriğine erişim
- Akıllı asistanlar
- Sesli çeviri

Konuşma Tanıma için İstatistiksel Yaklaşımlar

Tanımlar Modeller Yöntemler İstatistiksel Konuşma Tanıma: Biraz Matematiksel Notasyon

• Girdi: Akustik öznitelik vektör dizisi (A)

$$t = 1, \dots, T$$
$$a_t \in \mathbb{R}^d$$
$$A = a_1, a_2, \dots, a_T$$

• Çıktı: Kelime dizisi (W)

$$i = 1, ..., N$$
$$w_i \in \mathcal{V}$$
$$W = w_1, w_2, ..., w_N$$

İstatistiksel Konuşma Tanıma

- En olası sözcük dizisi $\widehat{W} = \arg \max_{W} P(W|A)$
- Bayes kuralı yardımıyla $\widehat{W} = \arg \max_{W} \frac{P(A|W)P(W)}{P(A)}$
- Konuşma tanımanın temel denklemi:

$$\widehat{W} = \arg\max_{W} P(A|W)P(W)$$

P(W): Dil Modeli

- Dil modeli bir dildeki tüm cümlelere (kelime dizilerine) bir olasılık atar.
- En genel haliyle $P(W) = \prod_{i=1}^{N} P(w_i | w_1, ..., w_{i-1})$
- Tabii ki *i* arttıkça bütün bu koşullu olasılıkları belirlemek mümkün olmayacaktır.
- Çözüm: Geçmişi gruplamak $h_i = \Phi(w_1, ..., w_{i-1})$
- Böylece $P(W) = \prod_{i=1}^{N} P(w_i | h_i)$

P(A|W): Akustik Model

- Akustik model bir akustik öznitelik vektör dizisinin bir sözcük dizisine karşılık gelme (koşullu) olasılığını verir.
- Bir dildeki tüm sözcük dizileri için ayrı bir olasılık modeli kestirmek mümkün değildir.
- Kısıtlı dağarcıklar haricinde tüm sözcükler için bile ayrı bir olasılık modeli kestirmek mümkün olmayabilir.
- Bu nedenle akustik modelleme için sözcüklerden küçük birimler kullanılır.

Söyleyiş (Telaffuz, Sesletim) Modeli: Sözcüklerden Sesçiklere

- Akustik modelleme için tercih edilen birimler sesçiklerdir (phone/phoneme).
- Sesçikler bağlam içinde modellenir. (örn. triphone)
- Sözcüklerden sesçiklere geçiş için bir söyleniş sözlüğü (pronunciation lexicon) kullanılır.
- Doğal karşılıklı konuşma için olasılıksal modeller önerilmiştir.

arg max : En olası sözcük dizisini bulma

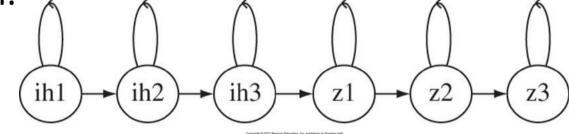
- Arama uzayı bir dildeki tüm sözcük dizilerini içermektedir.
- Bu uzay sonsuz olduğuna göre arama işlemi verimli bir şekilde yapılmalıdır.
- Eğer arama uzayı uygun bir şekilde (örn. sonlu durum içeren bir çizge) düzenlenirse dinamik programlama kullanılabilir.

P(W): (Görünür) Markov modelleri

- Markov varsayımı: Gelecek sadece şimdiki duruma bağlıdır, geçmişten bağımsızdır. $P(W) = \prod_{i=1}^{N} P(w_i | h_i)$
- Uzak geçmişi unutursak *n*-gram: $h_i = \{w_{i-n+1}, \dots, w_{i-1}\}$
 - Unigram: $P(W) = \prod_{i=1}^{N} P(w_i)$
 - Bigram: $P(W) = \prod_{i=1}^{N} P(w_i | w_{i-1})$
 - Trigram: $P(W) = \prod_{i=1}^{N} P(w_i | w_{i-2}, w_{i-1})$
- Model parametreleri durumlar arasındaki geçiş olasılıklarıdır.
- Ağırlıklı sonlu durum makinasıyla gerçeklenebilir.

P(A|W): Saklı Markov Modelleri (SMM)

- Saklı Markov modellerinde durumlar saklıdır.
- Yani hangi gözlemin hangi durumdan geldiği belli değildir.
- Her bir sesçik soldan sağa bir SMM ile modellenir.
- Sözcük modelleri sesçik modellerinin ardarda eklenmesiyle elde edilir.



P(A|W): SMM Olasılıkları

• Söyleyiş modeli ve saklı Markov modellerinin eklenmesiyle $W \rightarrow S = s_1, \dots s_M$ (sonlu durum dönüştürücüsü) $P(A|\Lambda(S)) = \sum_Q P(A, Q|\Lambda(S))$ $P(A, Q|\Lambda(S)) = \prod_{t=1}^T P(q_t|q_{t-1}; \Lambda(S))p(a_t|q_t; \Lambda(S))$

• $P(q_t|q_{t-1})$: Durumlar arası geçiş olasılıkları

$P(a_t|q_t)$: Durum Çıktı Olasılık Dağılımı

- Gauss Dağılımı (Normal dağılım) $p(a_t|q_t) = \mathcal{N}(a_t; \mu, \Sigma)$
- Gauss Karışım Modelleri

$$p(a_t|q_t) = \sum_k w_k \mathcal{N}(a_t; \mu_k, \Sigma_k)$$

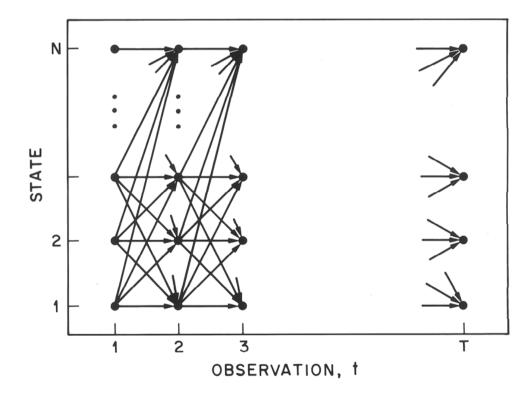
• Yapay Sinir Ağları

Modellerin Birleştirilmesi

- Ağırlıklı Sonlu Durum Makinaları ve Dönüştürücüleri
 - H: Saklı Markov Modeller (SMM'lerden durumlara)
 - C: Bağlam Modeli (sesçiklerden SMM'lere)
 - L: Söyleyiş sözlüğü (sözcüklerden sesçiklere)
 - G: Dil modeli (sözcükler)
- Arama uzayı: HoCoLoG
- Bu uzayı arama için verimli bir hale getirmek mümkündür. (det, min, push)

En iyi durum dizisinin bulunması

• Kafes yapısı (trellis)



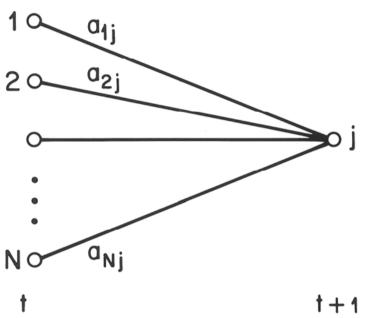
Viterbi Algoritması - 1

$$\delta_t(i) \equiv p(q_1^{t-1}, q_t = s_i, a_1^t)$$

1. Başlangıç:

$$\delta_{1}(i) = p(a_{1}|q_{1} = s_{i})$$

 $\psi_{1}(i) = 0$
2. Yineleme: $t = 1, ..., T - 1$
 $\delta_{t+1}(j) = \max_{i} \delta_{t}(i) a_{ij} p(a_{t+1}|q_{t+1} = s_{j})$
 $\psi_{t+1}(j) = \max_{i} \delta_{t}(i) a_{ij}$



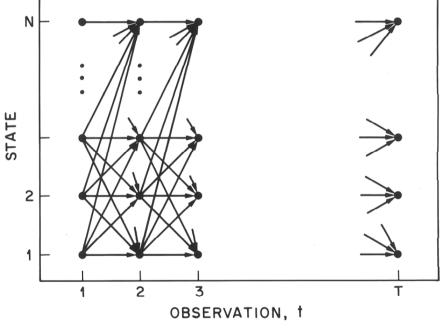
Viterbi Algoritması - 2

$$\delta_{t}(i) \equiv p(q_{1}^{t-1}, q_{t} = s_{i}, a_{1}^{t})$$
3. Son:

$$p^{*} = \max_{i} \delta_{T}(i)$$

$$q_{T}^{*} = \arg\max_{i} \delta_{T}(i)$$
4. Geri izleme: $t = T - 1, ..., 1$

$$q_{t}^{*} = \psi_{t+1}(q_{t+1}^{*})$$



En iyi sözcük dizisi

- Viterbi algoritması N^T durum dizisi içinden en iyi olanı N²T işlemle bulur.
- Sonlu durum dönüştürücüsünde sözcük bilgileri de saklanarak en iyi sözcük dizisi de belirlenmiş olur.
- Çıktı: En iyi durum/sözcük dizisi ve zaman bilgisi

Model Parametrelerinin Kestirimi

Ayrık (Görünür) Markov Model Olasılıklarının Kestirimi

- En yüksek olabilirlik kestirimi verinin olasılığını en yüksek yapan model parametrelerini belirler.
- Ayrık (görünür) Markov modelleri için parametreleri elimizdeki veriyi kullanarak sayma ve bölme işlemleriyle bulabiliriz.
- Örneğin ikili (bigram) dil modeli için

$$\widehat{P}(w_i|w_{i-1}) = \frac{C(w_{i-1},w_i)}{C(w_{i-1})}$$

Dil Modelinde Sıfır Olasılıklarla Başa Çıkma - 1

- En yüksek olabilirlik kestirimi veride görülmeyen dizilere 0 olasılık atar.
- Dil modellemede bunu istenmez.
- Yumuşatma yöntemleri (smoothing)
 - Zenginden alıp fakire verme \bigcirc
- Daha düşük derece koşullanmış olasılıkları kullanma
 - Aradeğerleme (interpolation)
 - Unutma (back-off)

Dil Modellemede Yumuşatma Yöntemleri

- N: derlem boyutu, V: dağarcık boyutu
- En yüksek olasılık kestirimi: $P(w_i) = \frac{C(w_i)}{N}$
- Laplace (bir ekleme): $P^*(w_i) = \frac{C(w_i)+1}{N+V}$
- Sabit (d) azaltma: Eğer $C(w_i) > 0$ ise $P^*(w_i) = \frac{C(w_i)-d}{N}$ Arda kalan olasılık görülmeyen sözcüklere dağıtılır.
- Good-Turing
- Kneser-Ney

Daha düşük derece modelleri kullanma

• Ara değerleme (interpolation): $\tilde{P}(w_i|w_{i-1}) = \lambda P(w_i|w_{i-1}) + (1 - \lambda)P(w_i)$

• Unutma (back-off):

$$\tilde{P}(w_i|w_{i-1}) = \begin{cases} C(w_{i-1}, w_i) > 0 \text{ ise } P^*(w_i|w_{i-1}) \\ degilse & \alpha(w_{i-1})\tilde{P}(w_i) \end{cases}$$

 $P^*(w_i|w_{i-1})$ azaltılmış olasılıklarıdır.

Dil modelleme için yapay öğrenme

- En yüksek entropi (MaxEnt)
 - Öznitelik temelli bir yaklaşım: $\phi(w_i, h_i)$
 - Doğrusal kısıtlar için üstel bir dağılım tanımlar:

$$P(w_i|h_i) = \frac{e^{\langle \alpha, \phi(w_i, h_i) \rangle}}{\sum_{w} e^{\langle \alpha, \phi(w, h_i) \rangle}}$$

- Ayırıcı (ayrımsayıcı discriminative) dil modelleri
 - Sadece doğruları değil yanlışları de dikkate alır
 - Doğrusal veya log-doğrusal (= üstel) modeller

Akustik Modellerin Kestirimi

- Üretici
 - En yüksek olabilirlik kestirimi
- Ayırıcı (ayrımsayıcı)
 - Koşullu en yüksek olabilirlik
 - En yüksek ortak bilgi kestirimi
 - En düşük (sesçik/sözcük) hata oranı kestirimi
 - En düşük Bayes riski kestirimi

Saklı Markov Modelleri için En Yüksek Olabilirlik Kestirimi

- Baum-Welch Algoritması
 - Bir beklenti-(en) büyütme (Expectation-Maximization) Algoritması
- İki adımdan oluşan döngüsel bir yöntem
 - Beklenti adımında bir önceki döngüdeki parametreler kullanılarak logaritmik olabilirlik fonksiyonunun beklenen değeri hesaplanır. Bu değer logaritmik olabilirlik fonksiyonunun bir alt sınırıdır.
 - (En)büyütme adımında ise bu alt sınırı (en)iyileyen parametre değerleri bulunur.

Beklenti (En)Büyütme Algoritması

- Model: *M*, gözlenen değişken: *X*, saklı değişken: *Z*
- Log olabilirlik: $\mathcal{L}(M|X) = \log \prod_t p(x_t|M) = \sum_t \log p(x_t|M)$
- Tüm log olabilirlik: $\mathcal{L}_c(M|X,Z) = \sum_t \log p(x_t, z_t|M)$
- Beklenti: $Q(M|M^i) = E[\mathcal{L}_c(M|X,Z)|X,M^i]$
- (En)büyütme: $M^{i+1} = \arg \max_{M} Q(M|M^i)$
- Teorem: $Q(M'|M) \ge Q(M|M)$ ise $\mathcal{L}(M'|X) \ge \mathcal{L}(M|X)$

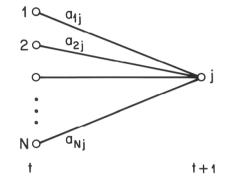
İleri (Forward) Algoritması

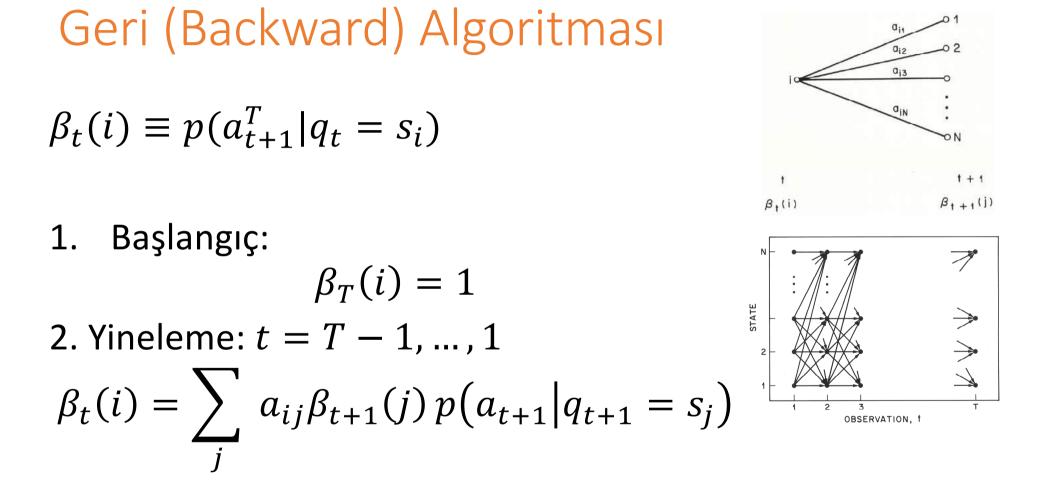
$$\alpha_t(i) \equiv p(a_1^t, q_t = s_i)$$

1. Başlangıç:

$$\alpha_{1}(i) = p(a_{1}|q_{1} = s_{i})$$

2. Yineleme: $t = 2, ..., T - 1$
 $\alpha_{t+1}(j) = \left[\sum_{i} \alpha_{t}(i) a_{ij}\right] p(a_{t+1}|q_{t+1} = s_{j})^{q}$





Beklenen değerlerin hesaplanması

• Beklenen durum geçiş sayıları

$$\xi_t(i,j) \equiv P(q_t = s_i, q_{t+1} = s_j | a_1^T, \Lambda)$$

$$\alpha_t(i) a_{ij} p(a_{t+1} | q_{t+1} = s_j) \beta_{t+1}(j)$$

$$\frac{\xi_t(i,j)}{\sum_{i'} \sum_{j'} \alpha_t(i') a_{i'j'} p(a_{t+1} | q_{t+1} = s_{j'}) \beta_{t+1}(j')}$$

Beklenen durum bulunma sayıları

$$\gamma_t(i) \equiv P(q_t = s_i | a_1^T, \Lambda)$$

$$\gamma_t(i) = \frac{\alpha_t(i)\beta_t(i)}{\sum_{i'} \alpha_t(i')\beta_t(i')} = \sum_j \xi_t(i,j)$$

Model Parametrelerinin Güncellenmesi

Geçiş olasılıkları

$$\hat{a}_{ij} = \frac{\sum_{t} \xi_t(i,j)}{\sum_{t} \gamma_t(i)}$$

• Gauss çıktı dağılımı için ortalama ve değişinti (varyans)

$$\hat{\mu}_{i} = \frac{\sum_{t} \gamma_{t}(i) a_{t}}{\sum_{t} \gamma_{t}(i)}$$
$$\hat{\sigma}_{i}^{2} = \frac{\sum_{t} \gamma_{t}(i) (a_{t} - \hat{\mu}_{i})^{2}}{\sum_{t} \gamma_{t}(i)}$$

Konuşma Tanıma için Derin Öğrenme

Derin Öğrenme ve Yapay Sinir Ağları

- «Derin» derken yapay sinir ağlarının mimarisi (katman sayısı) kastedilmektedir.
- YSA derinleştikçe veri gösterimi de öğrenilmekte ve verinin önceden işlenmesine ihtiyaç azalmaktadır.
- Konuşma tanımada Mel Frekans Kepstral Katsayıları (MFCC) yerini büyük ölçüde log(-mel) enerji özniteliklerine bırakmıştır.

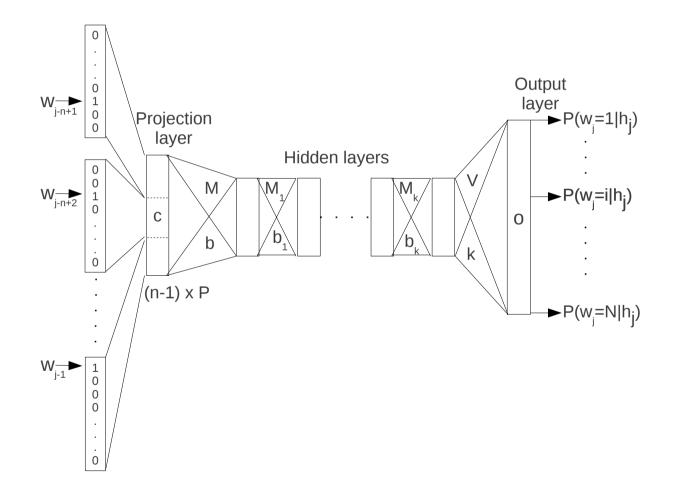
Konuşma Tanıma için Yapay Sinir Ağları

- Bir sınıflandırma yöntemi olan yapay sinir ağları sınıflandırmanın yanı sıra sınıflar üzerinden bir olasılık dağılımı da üretebilir.
- Bunun için çıkış katmanındaki çıktıların negatif olmayan ve toplamı bir olan değerler olması gerekir.
- Bu nedenle çıkış katmanında «softmax» işlevi kullanılır.

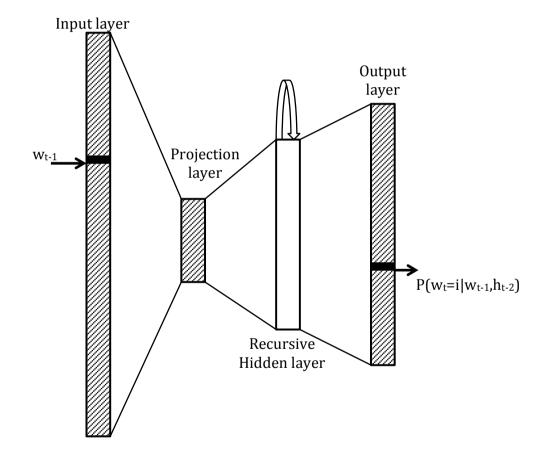
Dil Modelleme için Yapay Sinir Ağları

- Giriş katmanında geçmişe ait sözcük(ler) w_{i-n+1}, ..., w_{i-1} sadece o sözcüğe karşılık gelen girdi 1, diğerleri 0 olacak şekilde oluşturulan vektörleri,
- İlk (doğrusal) ortak katmanda sözcüklerin sürekli bir uzaydaki vektör gösterimleri,
- Çıkış katmanında da tahmin edilen sözcükler w_i bulunur.
- Bu istenen koşullu olasılığı verir: $P(w_i|w_{i-n+1}, ..., w_{i-1})$

İleri Beslemeli Sinir Ağları

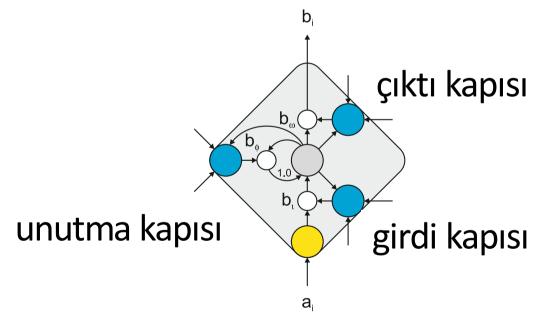


Yinelemeli (Özyineli) Sinir Ağları

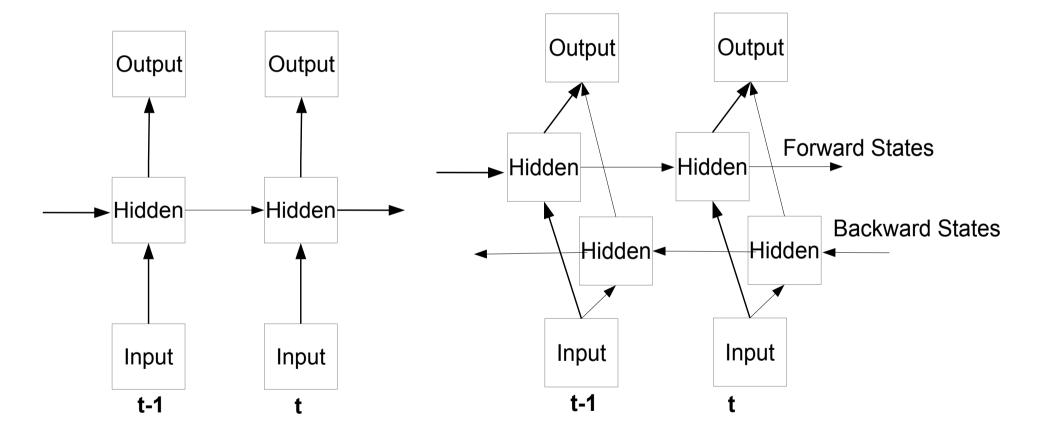


Uzun Kısa-Süreli Bellek (LSTM)

- Bir özyineli (yinelemeli) sinir ağı türüdür.
- Daha uzun etkileşimleri modelleyebilir.



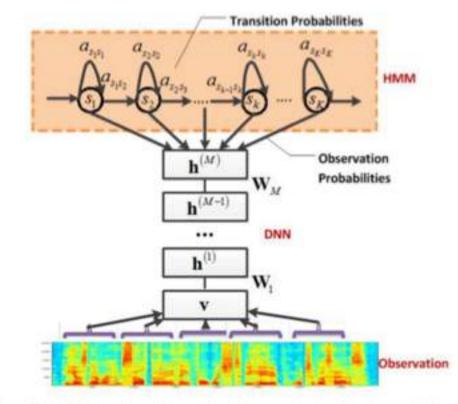
Tek ve Çift Yönlü Yinelemeli Sinir Ağları



Akustik Modellemede Yapay Sinir Ağları

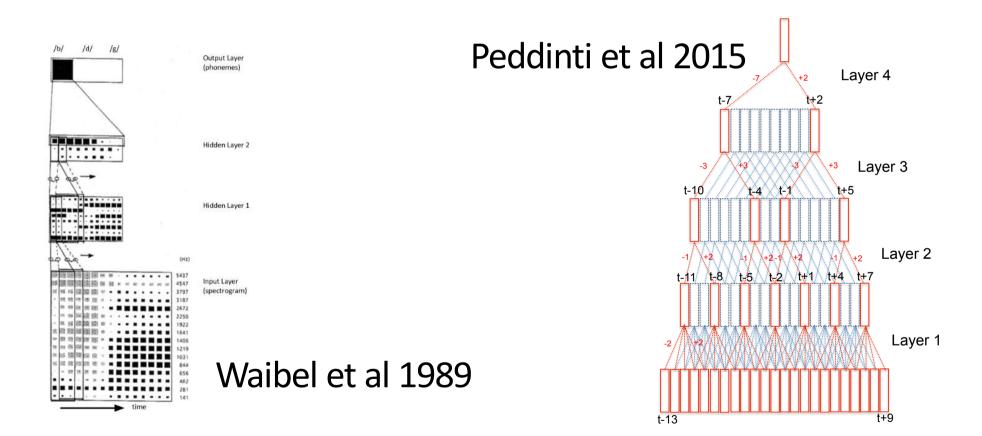
- Giriş katmanında bir zamana ait öznitelik vektörü a_t
- Çıkış katmanında da Markov modelinin durumları q_t bulunur.
- Bu bir sonsal olasılık verir: $P(q_t|a_t)$
- Bayes kuralıyla durum çıktı olasılık dağılımı elde edilir. $p(a_t|q_t) \propto P(q_t|a_t)/P(q_t)$

İleri Beslemeli Sinir Ağları

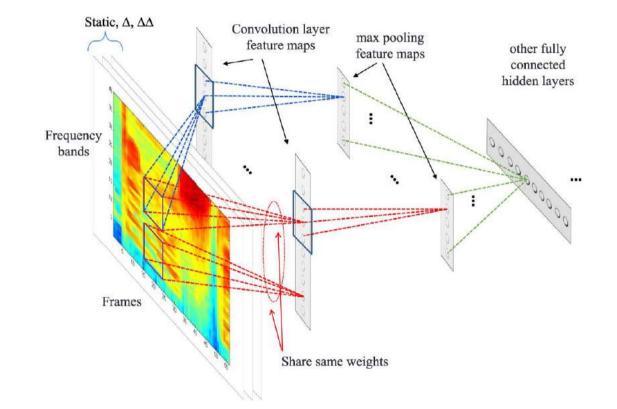


Dahl, George E., et al. "Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition." Audio, Speech, and Language Processing, IEEE Transactions on 20.1 (2012): 30-42.

Zaman Gecikmeli Sinir Ağları

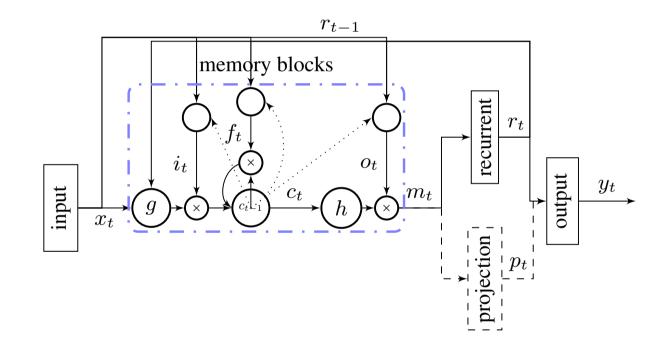


Evrişimsel Sinir Ağları



Abdel-Hamid et al, «Convolutional Neural Networks for Speech Recognition, IEEE/ACM TASLP 22(10), Oct 2014.

Yinelemeli Sinir Ağları: LSTM



Haşim Sak, Andrew Senior, Françoise Beaufays, «LSTM based RNN architectures for LVCSR», 2014.

Yapay Sinir Ağlarında Parametre Kestirimi

- Kestirimde çeşitli eniyileme yöntemleri kullanılmaktadır.
- Yaygın olarak (küçük grup) bayır inişi yöntemleri kullanılır: $w \leftarrow w \eta \nabla E(w)$
- Hata Geri Yayma (Back-Propagation) yönteminde eğim hesaplanırken türevler için zincir kuralından yararlanılır. Gizli katman $z_h = f(w_h^T x)$ Çıktı $y_i = g(v_i^T z)$

$$\frac{\partial E}{\partial w_{hj}} = \frac{\partial E}{\partial y_i} \frac{\partial y_i}{\partial z_h} \frac{\partial z_h}{\partial w_{hj}}$$

YSA Kestiriminde Amaç İşlevleri - 1

• Çapraz Entropi
$$H(p,q) = -\sum_{i} p_i \log q_i$$

 $\mathcal{F}_{CE} = -\sum_{u} \sum_{t} \log y_{ut}(s_{ut})$

- Dizisel İşlevler
 - En büyük ortak bilgi (MMI) $\mathcal{F}_{MMI} = \sum_{u} \log \frac{p(A_u | S(W_u))^{\kappa} P(W_u)}{\sum_{w} p(A_u | S(W))^{\kappa} P(W)}$

YSA Kestiriminde Amaç İşlevleri - 2

• Dizisel İşlevler En küçük Bayes riski (MBR) $\mathcal{F}_{MBR} = \sum_{u} \log \frac{\sum_{W} p(A_u | S(W))^{\kappa} P(W) A(W, W_u)}{\sum_{W'} p(A_u | S(W'))^{\kappa} P(W')}$

Burada $A(W, W_u)$ ham doğruluğu ifade eder.

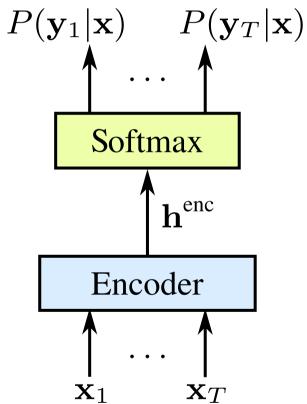
- En küçük sesçik hatası (MPE): doğru sesçik sayısı
- Durum seviyesi en küçük Bayes riski: doğru durum sayısı

Vesely et al, «Sequence-discriminative training of deep neural networks», Interspeech 2013.

Baştan Sona (Uçtan Uca) Konuşma Tanıma

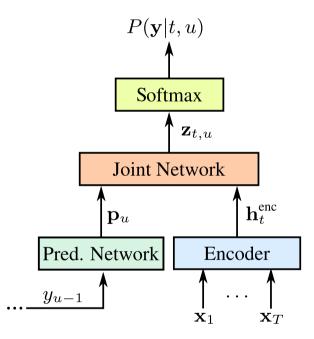
- Son yıllarda oldukça alt düzey öznitelikler dizilerinden (ve hatta konuşma sinyalinden) doğrudan harf/sesçik/sözcük dizileri üreten sistemler önerilmiştir.
- Bu sistemler diziden diziye (seq2seq) modeller kullanırlar.
- İlk olarak girdi gizyazıcı tarafından gömülü bir gösterime çevrilir, daha sonra da gizçözücü tarafından çıktılar üretilir.
- Bu yaklaşım genelde daha çok veri (ve daha az bilgi?) gerektirmektedir.

Bağlantıcı Zamansal Sınıflandırma Connectionist Temporal Classification (CTC)



Prabhavalkar et al, «A Comparison of Sequence-to-Sequence Models for Speech Recognition», Interspeech 2017.

Özyineli Dönüştürücü Sinir Ağı



Prabhavalkar et al, «A Comparison of Sequence-to-Sequence Models for Speech Recognition», Interspeech 2017.

Dinle, Dikkat et, Yaz Chan et al, «Listen, Attend and Spell», 2015

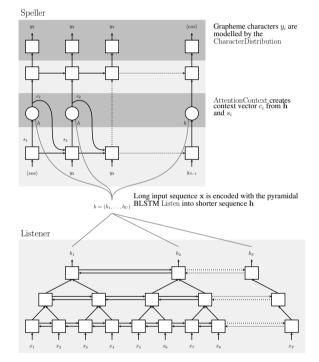
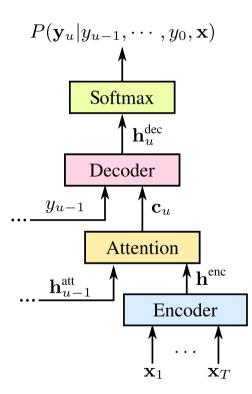


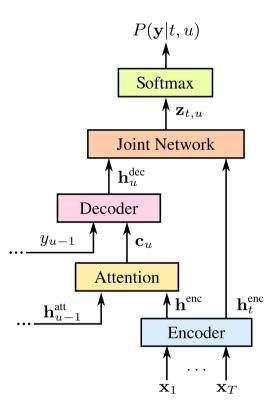
Figure 1: Listen, Attend and Spell (LAS) model: the listener is a pyramidal BLSTM encoding our input sequence x into high level features h, the speller is an attention-based decoder generating the y characters from h.

Dikkat Tabanlı Model



Prabhavalkar et al, «A Comparison of Sequence-to-Sequence Models for Speech Recognition», Interspeech 2017.

Dikkat İçeren Özyineli Dönüştürücü Sinir Ağı

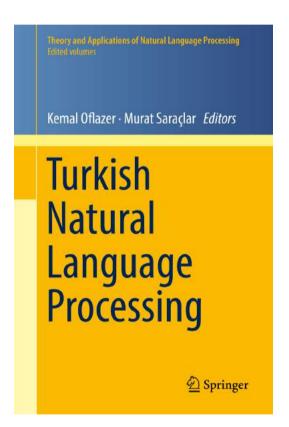


Prabhavalkar et al, «A Comparison of Sequence-to-Sequence Models for Speech Recognition», Interspeech 2017.

3 Temmuz Salı: Ses ve Konuşma İşleme Günü

- IEEE Signal Processing Society Distinguished Industry Speaker Speech Recognition: What's Left? Michael Picheny
- <u>Türkce icin Konusma Tanıma ve Derin Öğrenmevle Dil Modelleme Ebru</u> Arısoy
- Tek ve Çok Kanallı Ses Kaynağı Ayırma için Derin Öğrenme Hakan Erdoğan
- Duvgulanımsal Konusma ve İsmar Modelleri icin Derin Öğrenme Engin Erzin
- Konusma Sentezi Cenk Demiroğlu
- Karma Gerçeklik için Ses Etkileşimleri Cumhur Erkut

Pek Yakında ...



Turkish Natural Language Processing Kemal Oflazer, Murat Saraçlar *Editors*

- Ch. 4: Language Modeling for Turkish Text and Speech Processing Arisoy and Saraçlar
- Ch. 5: Turkish Speech Recognition Arisoy and Saraçlar